Abstract

Nucleic acid microarrays are a growing technology in which high densities of known sequences are attached to a substrate in known locations (addressed). Hybridization of complementary sequences leads to a detectable signal such as an electrical impulse or fluorescence. This combination of sequence addressing, hybridization, and detection increases the efficiency of a variety of genomic disciplines including those that profile genetic expression, search for single nucleotide polymorphisms (SNPs), or diagnose infectious diseases by sequencing portions of microbial or viral genomes. Incorporation of reporter molecules into nucleic acids is essential for the sensitive detection of minute amounts of nucleic acids on most types of microarrays. Furthermore, polynucleic acid size reduction increases hybridization because of increased diffusion rates and decreased competing secondary structure of the target nucleic acids. Typically, these reactions would be performed as two separate processes. An improvement to past techniques, termed labeling-during-cleavage (LDC), is presented in which DNA or RNA is alkylated with fluorescent tags and fragmented in the same reaction mixture. In model studies with 26 nucleotide-long RNA and DNA oligomers using ultraviolet/visible and fluorescence spectroscopies as well as high-pressure liquid chromatography and mass spectrometry, addition of both alkylating agents (5-(bromomethyl)fluorescein, 5- or 6-iodoacetamidofluorescein) and select metal ions (of 21 tested) to nucleic acids in aqueous solutions was critical for significant increases in both labeling and fragmentation, with >or=100-fold increases in alkylation possible relative to metal ion-free reactions. Lanthanide series metal ions, Pb(2+), and Zn(2+) were the most reactive ions in terms of catalyzing alkylation and fragmentation. While oligonucleotides were particularly susceptible to fragmentation at sites containing phosphorothioate moieties, labeling and cleavage reactions occurred even without incorporation of phosphorothioate moieties into the RNA and DNA target molecules. In fact, LDC conditions were found in which RNA could be fragmented into its component monomers, allowing simultaneous sequencing from both the 5'- and the 3'-termini by mass spectrometry. The results can be explained by alkylation of the (thio)phosphodiester linkages to form less hydrolytically stable (thio)phosphotriesters, which then decompose into 2',3'-cyclic phosphate (or 2'-phosphate) and 5'-hydroxyl terminal products. Analysis of fragmentation and alkylation products of Mycobacterium tuberculosis (Mtb) ribosomal RNA (rRNA) transcripts by polyacrylamide gel electrophoresis was consistent with the model studies. Building upon these results, I found that products from Mtb rRNA amplification products were processed with fluorescent reporters and metal ions in a single reaction milieu for analysis on an Affymetrix GeneChip. Mild conditions were discovered which balanced the need for aggressive alkylation and the need for controlled fragmentation, advantageously yielding GeneChip results with greater than 98% of the nucleotides reported correctly relative to reference sequences, results sufficient for accurately identifying Mtb from other Mycobacterium species. Thus, LDC is a new, straightforward, and rapid aqueous chemistry that is based on metal ion-catalyzed alkylation and alkylation-catalyzed fragmentation of nucleic acids for analysis on microarrays or other hybridization assays and that, possibly, has utility in similar processing of other appropriately functionalized biomolecules.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.