Abstract
Quinol/quinone equilibria are ubiquitous in nature and find multiple technological applications, most recently in electrical charge storage. Much research has been devoted to proton-coupled electron transfer (PCET) in such systems and to bidentate complexation of ortho-quinol (catechol) ligands with multivalent metal ions but rarely to the interplay of these two reactions. Here, we investigate the impact of a redox-inactive metal ion, as a complexing and charge-compensating agent, on redox processes of catechol in aqueous solutions, that is, in the presence of proton equilibria. We pay separate attention to their thermodynamics and kinetics, which can be regulated by the pH and buffer capacity. As the proton buffer concentration decreases, proton equilibria during catechol PCET are slower to establish, thus kinetically prioritizing the participation of the metal ion rather than the proton in the redox charge compensation. Making use of this kinetic interplay can be a general strategy to conceive organic battery cathodes for proton-free metal-ion aqueous batteries.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.