Abstract

The self-assembly of aromatic amino acids has been widely studied due to their ability to form well-defined amyloid-like fibrillar structures. Herein, for the first time, we report the existence of different metastable intermediate states of diverse morphologies, for example, droplets, spheres, vesicles, flowers, and toroids, that are sequentially formed in aqueous medium during the self-assembly process of phenylalanine in the presence of different divalent (Zn2+, Cd2+, and Hg2+) and trivalent (Al3+, Ga3+, and In3+) metal ions having low pKa values. Due to metal ion-amino acid coordination and strong hydrophobic interaction induced by these metal ions, spherical aggregates are obtained at the initial stage of the structural evolution and further transformed into other intermediate states. Our work may facilitate understanding of the role of metal ions in the amino acid self-assembly process and broaden future applications of the obtained nanostructures in drug delivery, tissue engineering, bioimaging, biocatalysis, and other fields.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.