Abstract
Alkaline phosphatase (AP) displays significant structural changes during metal-ion binding, supporting cooperative interactions between the subunits of the dimeric enzyme. Here, we present data on the dynamic properties of AP from E. coli, and characterize the structural changes that accompany variations in metal-ion content, combining limited proteolysis and MALDI-TOF mass spectrometry. Limited proteolysis revealed an internal cleavage site at Arg-293, reflecting a position of conformational flexibility supporting subunit communication essential for catalysis. A specific shielding of a region distant from the metal-binding site has been demonstrated, implying transmission of conformational changes, induced by metal-ion binding to the adjacent subunit, across the subunit interface.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.