Abstract

The effects of metal cationization on collisionally activated dissociation (CAD) of phospholipids were investigated by electrospray ionization with quadrupole ion trap tandem mass spectrometry. The metal ions include Li(+), Na(+), K(+), Sr(2+), Ba(2+), and the first transition series. CAD of the transition metal ion-bound lipid complexes gave significant yields of product ions that identify the positions of the two fatty acyl substituents on the glycerophospholipid backbone. The cobalt(II) ion, which has a single naturally occurring isotope, was expected to be a better cationization reagent as it produces simpler mass spectra than other transition metal ions. CAD of the cobalt(II) ion complexes of glycerophosphoethanolamines, glycerophosphoglycerols and glycerophosphoserines yielded product ions that revealed information regarding both the lipid classes and the regiospecific positions of the two fatty acyl substituents.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.