Abstract

Rate constants have been determined for hydrolysis of the acetate, glutarate, and phthalate monoesters of 2-hydroxy-1,10-phenanthroline in water at 30°C and μ = 0.1 M with KCl. The hydrolysis reactions of the esters are hydroxide ion catalyzed at pH > 9. The phthalate and glutarate monoesters have in addition pH-independent reactions from pH 5.5 to 9 that involve intramolecular participation by the neighboring carboxylate anion. The pH-independent reaction of the glutarate monoester is ∼5-fold faster than that of the phthalate monoester. The plots of log kobsd vs pH for hydrolysis of the carboxyl substituted esters are bell shaped at pH < 5, which indicates a rapid reaction of the zwitterionic species (carboxyl anion and protonated phenanthroline nitrogen). The divalent metal ions, Cu2+, Ni2+, Zn2+, and Co2+, complex strongly with the esters; saturation occurs at metal ion concentrations less than 0.01 M. The 1:1 metal ion complexes have greatly enhanced rates of hydrolysis; the second-order rate constants for the OH− reactions are increased by factors of 105 to 108 by the metal ion. The pH-rate constant profiles for the phthalate and glutarate ester metal ion complexes have a sigmoidal region below pH 6 that can be attributed to a metal ion-promoted carboxylate anion nucleophilic reaction. The carboxyl group reactions are enhanced 102 - to 103 -fold by the metal ions, which allows the neighboring group reaction to be competitive with the favorable metal ion-promoted OH− reaction at pH < 6, but not at pH > 6. The half-lives of the pH-independent neighboring carboxyl group reactions of the Cu(II) complexes at 30°C are ∼l2 s. The other metal ion complexes are only slightly less reactive (half-lives vary from 2.5 to 40 s). These are the most rapid neighboring carboxyl group reactions that have been observed in ester hydrolysis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call