Abstract

The application of capillary zone electrophoresis to the separation and determination of metal ions after the precolumn formation of negatively charged chelates is described. Multi-component mixtures of transition metal complexes with 8-hydroxyquinoline-5-sulphonic acid (HQS) were separated in about 10 min in a fused-silica capillary column with a borate buffer of pH 9.2 at an applied voltage of 15 kV followed by direct UV detection. The capillary pretreatment with an electroosmotic flow modifier, namely a tetraalkylammonium salt, is necessary to achieve resonable migration times of these metal complexes. Incorporating the chelating reagent in the electrophoretic buffer markedly improves the detectability of relatively unstable chelates, such as those of Co(II), Zn(II) and Cd(II), and allows the separation of metal ions that form unstable HQS chelates, such as Mn(II) and alkaline earth metals. The effects of electrophoretic buffer parameters affecting the complexation reaction and migration behaviour are discussed. Linearity of calibration graphs is observed for about three orders of magnitude with sub-ppm detection limits. The applicability of the method to the analysis of real samples is demonstrated.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call