Abstract

1. The serotonin type 1A (5-HT1A) receptors are members of a superfamily of seven transmembrane domain receptors that couple to GTP-binding regulatory proteins (G-proteins). We have studied the modulation of agonist binding to 5-HT1A receptors from bovine hippocampus by metal ions and guanine nucleotide. 2. Bovine hippocampal membranes containing the 5-HT1A receptor were isolated. These membranes exhibited high-affinity binding sites for the specific agonist [3H]OH-DPAT. 3. The agonist binding is inhibited by monovalent cations Na+, K+, and Li+ in a concentration-dependent manner. Divalent cations such as Ca2+, Mg2+, and Mn2+, on the other hand, show more complex behavior and induce enhancement of agonist binding up to a certain concentration. The effect of the metal ions on agonist binding is strongly modulated in the presence of GTP-gamma-S, a nonhydrolyzable analogue of GTP, indicating that these receptors are coupled to G-proteins. 4. To gain further insight into the mechanisms of agonist binding to bovine hippocampal 5-HT1A receptors under these conditions, the binding affinities and binding sites have been analyzed by Scatchard analysis of saturation binding data. Our results are relevant to ongoing analyses of the overall regulation of receptor activity for G-protein-coupled seven transmembrane domain receptors.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call