Abstract
We explore the ground-state properties of the two-band Hubbard model with degenerate electronic bands, parametrized by nearest-neighbor hopping $t$, intra- and inter-orbital on-site Coulomb repulsions $U$ and $U^\prime$, and Hund coupling $J$, focusing on the case with $J>0$. Using Jastrow-Slater wave functions, we consider both states with and without magnetic/orbital order. Electron pairing can also be included in the wave function, in order to detect the occurrence of superconductivity for generic electron densities $n$. When no magnetic/orbital order is considered, the Mott transition is continuous for $n=1$ (quarter filling); instead, at $n=2$ (half filling), it is first order for small values of $J/U$, while it turns out to be continuous when the ratio $J/U$ is increased. A significant triplet pairing is present in a broad region around $n=2$. By contrast, singlet superconductivity (with $d$-wave symmetry) is detected only for small values of the Hund coupling and very close to half filling. When including magnetic and orbital order, the Mott insulator acquires antiferromagnetic order for $n=2$; instead, for $n=1$ the insulator has ferromagnetic and antiferro-orbital orders. In the latter case, a metallic phase is present for small values of $U/t$ and the metal-insulator transition becomes first order. In the region with $1<n<2$, we observe that ferromagnetism (with no orbital order) is particularly robust for large values of the Coulomb repulsion and that triplet superconductivity is strongly suppressed by the presence of antiferromagnetism. The case with $J=0$, which has an enlarged SU(4) symmetry due to the interplay between spin and orbital degrees of freedom, is also analyzed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.