Abstract

Results are presented from a theoretical study of the possibility of hole carrier localization and metal-insulator transitions which show up in the temperature dependences of the magnetic susceptibility χ(T) of doped copper-oxide (cuprate) compounds. The criteria for metal-insulator transitions owing to strong hole-lattice interactions and the formation of very narrow polaron bands in these materials with reduced doping level x are analyzed. It is shown that these kinds of metal-insulator transitions occur in underdoped La2-xSrxCuO4 and YBa2Cu3O6+x cuprates (i.e., for x ranging from 0.04 to 0.12). The characteristic temperature dependences χ(T) of the HTSC cuprates are found for different doping levels. These results are in good agreement with experimental data on metal-insulator transitions and the magnetic susceptibility of the HTSC cuprates.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.