Abstract

We study the electronic structure and correlations in the geometrically frustrated two dimensional checkerboard lattice. In the large U limit considered here we start from an extended Hubbard model of spinless fermions at half-filling. We investigate the model within two distinct Green's function approaches: In the first approach a single-site representation decoupling scheme is used that includes the effect of nearest neighbor charge fluctuations. In the second approach a cluster representation leading to a 'multiorbital' model is investigated which includes intra-cluster correlations exactly and those between clusters on a mean field basis. It is demonstrated that with increasing nearest-neighbor Coulomb interaction V both approaches lead to a metal-insulator transition with an associated 'Mott-Hubbard' like gap caused by V. Within the single site approach we also explore the possibility of charge order. Furthermore we investigate the evolution of the quasiparticle bands as funtion of V.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.