Abstract

The temperature dependences of the electrical resistivity ρ(T) and the ac magnetic susceptibility χ(T, H = 0) are thoroughly investigated for a perovskite-like lanthanum manganite, namely, La0.85Sr0.15MnO3, which is preliminarily exposed to neutron irradiation with a fluence F = 2 × 1019 cm−2 and then annealed at different temperatures ranging from 200 to 1000°C. The results of the electrical resistance measurements demonstrate that neutron irradiation of the samples leads to the disappearance of the low-temperature insulating phase. As the annealing temperature increases, the insulating phase is not restored and the manganite undergoes a transformation into a metallic phase. Analysis of the magnetic properties shows that, under irradiation, the ferromagnet-paramagnet phase transition temperature TC decreases and the magnetic susceptibility is reduced significantly. With an increase in the annealing temperature, the phase transition temperature TC and magnetic susceptibility χ(T, H = 0) increase and gradually approach values close to those for an unirradiated sample. This striking difference in the behavior of the electrical and magnetic properties of the radiation-disordered La0.85Sr0.15MnO3 manganite is explained qualitatively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.