Abstract
A metal ion sensing fluorophore L that exhibits a large two-photon absorption cross-section has been synthesized in good yields. The influences of different metal ion inputs, on the one- and two-photon spectroscopic properties of L, have been investigated. The ligand itself does not show any fluorescence although in presence of a metal ion like Zn(II), Cd(II), Mg(II) or Ca(II), a ∼25 time enhancement of fluorescence is observed. The ligand with symmetrical “donor–acceptor–acceptor–donor” characteristics exhibits a large two-photon absorption cross-section measured by femtosecond open-aperture Z-scan technique at 880 nm. However, presence of any of the above metal ions lowers its two-photon absorption cross-section ( δ) to different extents at 880 nm. Theoretical calculation carried out in DFT formalism on the ligand and its Zn(II) complex corroborate experimental results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.