Abstract

We have shown recently that halogenated quinones could enhance the decomposition of hydroperoxides and formation of alkoxyl/hydroxyl radicals through a metal-independent mechanism. However, neither the proposed quinone enoxy radical intermediate, nor the major reaction products were unambiguously identified. In the present study, one of the major reaction products between 2,5-dichloro-1,4-benzoquinone (DCBQ) and t-butylhydroperoxide (t-BuOOH) was isolated and purified by semipreparative HPLC, and identified as 2-hydroxy-3-t-butoxy-5-chloro-1,4-benzoquinone [CBQ(OH)-O-t-Bu], which is the rearranged isomer of the postulated quinone-peroxide reaction intermediate. The formation of CBQ(OH)-O-t-Bu was found to be inhibited by the spin trapping agent 5,5-dimethyl-1-pyrroline N-oxide (DMPO), and concurrently, a new DMPO adduct with 1-chlorine isotope peak clusters at m/z 268 was observed. Further electron spin resonance (ESR) spin-trapping, (1)H-NMR and HPLC/Fourier transform ion cyclotron resonance (FTICR) mass spectrometric studies with oxygen-17-labeled and unlabeled hydrogen peroxide strongly suggest that the radical trapped by DMPO is a carbon-centered quinone ketoxy radical, which is the spin isomer of the proposed oxygen-centered quinone enoxy radical. Analogous results were observed when DCBQ was substituted by other halogenated quinones. This study represents the first detection and identification of an unusual carbon-centered quinone ketoxy radical, which provides direct experimental evidence to further support and expand our previously proposed mechanism for metal-independent decomposition of hydroperoxides by halogenated quinones.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.