Abstract

Metal hydrides have emerged as a promising solution for efficient hydrogen storage in solid matter. While the charging and discharging kinetics of these systems are well-known, dynamic control strategies from a system’s perspective still need a detailed analysis by the scientific community. In this research work, a metal hydrides system and its dynamic controls have been numerically studied. AB2-type metals (ZrMn2) are involved as a storage medium, which is coupled to a conditioning system via a heat pump and a hydrogen compressor; therefore, both operating temperature and pressure can be controlled. Results showed that hydrogen pressure is a fundamental component in accelerating reaction dynamics and increasing stored mass. However, it is also the most energy-intensive component. The use of a conditioning system, which works at a proper set temperature, can reduce the hydrogen compressor energy to achieve the same performance, although requiring higher power input from the heat pump’s compressor. Furthermore, the operational strategy must be chosen based on either the minimization of charging/discharging time or energy expenses.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call