Abstract

Density functional theory investigations revealed that the pyridine-boryl radical generated in situ using 4-cyanopyridine and bis(pinacolato)diboron could be used as a bifunctional "reagent", which serves as not only a pyridine precursor but also a boryl radical. With the unique reactivity of such radicals, 4-substituted pyridine derivatives could be synthesized using α,β-unsaturated ketones and 4-cyanopyridine via a novel radical addition/C-C coupling mechanism. Several controlled experiments were conducted to provide supportive evidence for the proposed mechanism. In addition to enones, the scope could be extended to a wide range of boryl radical acceptors, including various aldehydes and ketones, aryl imines and alkynones. Lastly, this transformation was applied in the late-stage modification of a complicated pharmaceutical molecule.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.