Abstract
The ongoing search for new non-precious-metal catalysts (NPMCs) with excellent electrocatalytic performance to replace Pt-based catalysts has been viewed as an important strategy to promote the development of fuel cells. Recent studies have proven that carbon materials doped with atoms which have a relatively small atomic size (e.g. N, B, P or S), have also shown pronounced catalytic activity. Herein, we demonstrate the successful fabrication of CNT/graphene doped with Se atoms, which has a relatively large atomic size, by a simple, economical, and scalable approach. The electrocatalytic performance of the resulting Se-doped CNT-graphene catalyst exhibits excellent catalytic activity, long-term stability, and a high methanol tolerance compared to commercial Pt/C catalysts. Our results confirmed that combining CNTs with graphene is an effective strategy to synergistically improve ORR activity. More importantly, it is also suggested that the development of graphite materials doped with Se or other heteroatoms of large size will open up a new route to obtain ideal NPMCs with realistic value for fuel cell applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.