Abstract

α,β-Unsaturated aldehydes are important building blocks for the synthesis of a wide range of chemicals, including polymers. The synthesis of these molecules from cheap feedstocks such as alkenes remains a scientific challenge, mainly due to the low reactivity of alkenes. Here we report a selective and metal-free access to α,β-unsaturated aldehydes from alkenes with formaldehyde. This reaction is catalyzed by dimethylamine and affords α,β-unsaturated aldehydes in yields of up to 80 %. By combining Density Functional Theory (DFT) calculations and experiments, we elucidate the reaction mechanism which is based on a cascade of hydride transfer, hydrolysis and aldolization reactions. The reaction can be performed under very mild conditions (30-50 °C), in a theoretically 100 % carbon-economical fashion, with water as the only by-product. The reaction was successfully applied to non-activated linear 1-alkenes, thus opening an access to industrially relevant α,β-unsaturated aldehydes from cheap and widely abundant chemicals at large scale.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call