Abstract
Metal-free perovskites are of interest for their chemical diversity and eco-friendly properties, and recently have been used for X-ray detection with superior carrier behavior. However, the size and shape complexity of the organic components results in difficulties in evaluating their stability in high-energy radiation. Herein, we introduce multiple hydrogen-bond metal-free PAZE-NH4X3⋅H2O perovskite, where H2O leads to more hydrogen bonds appearing between organic molecules and the perovskite host. As suggested by the theoretical calculations, multiple hydrogen bonds promote stiffness of the lattice, and increase the diffusion barrier to inhibit ionic migration. Then, low trap density, high μτ products and structural flexibility of PAZE-NH4Br3⋅H2O give a flexible X-ray detector with the highest sensitivity of 3708 μC Gyair−1 cm−2, ultra-low detection limit of 0.19 μGyair−1 s−1 and superior spatial resolution of 5.0 lp mm−1.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.