Abstract
Developing efficient metal-free carbon-based electrocatalysts for the oxygen reduction reaction (ORR) is significant and challenging to reduce the cost of fuel cells and metal–air batteries for large-scale applications. Herein, a novel metal-free N, B, F ternary-doped carbon electrocatalyst (FBNCΔ(1:6)-950) exhibited an excellent ORR performance with half-wave potential of 0.858 V vs. reversible hydrogen electrode (RHE) via an almost exclusively four-electron transfer pathway in 0.1 M KOH, even better than the commercial Pt/C (20 %). Moreover, the FBNCΔ(1:6)-950-based zinc–air battery (ZAB) shown an excellent power density of 147 mW·cm−2 and long-term stability of 100 h. The FBNCΔ(1:6)-950 was constructed via pyrolyzing zeolite imidazole framework (ZIF-8) precursor containing BF4– at 950 °C under N2 to volatilize the Zn. According to the structural characterization and theoretical calculations, B and F from BF4– not only increased the number of active sites of pyridine-N by etching intact carbon matrix, but also co-modified part of pyridine-N to further optimize the electronic structure and reduce the adsorption energy of *OH, both of which together result in the excellent performance of FBNCΔ(1:6)-950. This work provides a fresh perspective on the advancement of highly active metal-free carbon-based electrocatalysts for the ORR and ZAB.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.