Abstract

Organic and molecule-based magnets are not easily attainable, as introduction of stable paramagnetic centers to pure organic systems is particularly challenging. Crystalline covalent organic frameworks (COFs) with high designability and chemical diversity constitute ideal platforms to access intriguing magnetic phenomena of organic materials. In this work, we proposed a general approach to attain unpaired electron spin and metal-free magnetism in narrow-band COFs by chemical doping. By using density functional theory calcu-lations, we found that dopants with energy-matched frontier orbitals to COFs not only inject charges but also further localize them through orbital hybridization and formation of supramolecular charge-transfer complex. The localized electronic states ensure that stable paramagnetic centers can be introduced to nonmagnetic COFs. Based on these discoveries, we designed two new COFs with narrow valence bands, which show prospective magnetism after doping with iodine. Further, we unraveled the magnetic anisotropy in two-dimensional COFs and demonstrated that both spin-conduction and magnetic interactions can be effectively modulated by ma-nipulating the building blocks of COFs. Our work highlights a practical route to attain magnetism in COFs and other organic materials, which show great potential for applications in organic spintronic devices.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call