Abstract

A pyrene dimer (PYD) is synthesized by electrochemical oxidation via homocoupling of pyrene (PY) inside the pores of MgO-templated mesoporous carbons without any metal catalysts or organic solvents. The resulting MgO-C/PYD hybrids can be used as high-performance aqueous electrochemical capacitor electrodes due to the reversible redox property of PYD and large contact area between the hybridized PYD and conductive carbon surfaces, which enable rapid charge transfer at the large contact interface. In our previous study, PY was considered to polymerize through electrochemical oxidation, and activated carbon with the pore sizes of ∼4 nm was used as a porous carbon substrate. In this study, the MgO-templated carbons have the average pore sizes of 5, 10, and 30 nm, and their large mesopore volumes can accommodate a large amount of PYD for enhancing the capacitance. To develop high-performance electrochemical capacitors, the dependence of the capacitance enhancement and the capacitance retention on the amount of PY and the pore sizes of MgO-templated carbons are studied. It is found that mesopores are necessary for fast charging/discharging, but the capacitance retention and capacitance enhancement decrease with increasing the mesopore sizes and the amount of PY due to the decreased utilization ratio of PY.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call