Abstract

A suitable protocol for the photocatalytic decarboxylation of carboxylic acids was developed with metal-free ceramic boron carbon nitrides (BCN). With visible light irradiation, BCN oxidize carboxylic acids to give carbon-centered radicals, which were trapped by hydrogen atom donors or employed in the construction of the carbon–carbon bond. In this system, both (hetero)aromatic and aliphatic acids proceed the decarboxylation smoothly, and C–H, C–D, and C–C bonds are formed in moderate to high yields (35 examples, yield up to 93%). Control experiments support a radical process, and isotopic experiments show that methanol is employed as the hydrogen atom donor. Recycle tests and gram-scale reaction elucidate the practicability of the heterogeneous ceramic BCN photoredox system. It provides an alternative to homogeneous catalysts in the valuable carbon radical intermediates formation. Moreover, the metal-free system is also applicable to late-stage functionalization of anti-inflammatory drugs, such as naproxen and ibuprofen, which enrich the chemical toolbox.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.