Abstract
As the need for sustainable battery chemistry grows, non-metallic ammonium ion (NH4 + ) batteries are receiving considerable attention because of their unique properties, such as low cost, nontoxicity, and environmental sustainability. In this study, the solvation interactions between NH4 + and solvents are elucidated and design principles for NH4 + weakly solvated electrolytes are proposed. Given that hydrogen bond interactions dominate the solvation of NH4 + and solvents, the strength of the solvent's electrostatic potential directly determines the strength of its solvating power. As a proof of concept, succinonitrile with relatively weak electronegativity is selected to construct a metal-free eutectic electrolyte (MEE). As expected, this MEE is able to significantly broaden the electrochemical stability window and reduce the solvent binding energy in the solvation shell, which leads to a lower desolvation energy barrier and a fast charge transfer process. As a result, the as-constructed NH4 -ion batteries exhibit superior reversible rate capability (energy density of 65Whkg-1 total active mass at 600Wkg-1 ) and unprecedent long-term cycling performance (retention of 90.2% after 1000 cycles at 1.0Ag-1 ). The proposed methodology for constructing weakly hydrogen bonded electrolytes will provide guidelines for implementing high-rate and ultra-stable NH4 + -based energy storage systems.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.