Abstract

The success of the next generation of anion-exchange membrane fuel cells (AEMFCs) depends on the development of active, reliable, and economical oxygen reduction reaction (ORR) catalysts. Here, we synthesize a series of ultra-low-cost metal-free ORR catalysts by doping a common pristine graphite precursor with chemically singular-type heteroatoms, namely I, S, N, or B, using single-step planetary ball milling technique. All doped-graphites show substantially enhanced ORR performance relative to the pristine (undoped) graphite. Among all the tested catalysts, N-graphite exhibited the highest ORR onset potential of 0.87 V vs. reversible hydrogen electrode. These results are supported by density functional theory calculations. The ORR catalysts also exhibit remarkable stability as evaluated through electrochemical tests. Most importantly, the AEMFCs prepared using these ultra-low-cost doped graphites deliver notable peak power densities with impressive voltage efficiencies, which further supports their efficacy in ORR catalysis and the broad implementation of this technology.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.