Abstract

The ultrasensitive detection and efficient degradation of tetracycline (TC) residues are important for improving food safety and protecting human health. In this paper, a smart silver-enhanced fluorescence platform for the ultrasensitive detection of TC was constructed via a simple and selective modification of the interior and external tubes of natural halloysite nanotubes. The thick pipe wall of this platform provides a natural defense and promotes metal-enhanced fluorescence effects, which subsequently accelerates the detection of TC. Moreover, the nanoplatform of the modified Ag nanoparticles can induce the separation of electrons and holes, thereby enhancing photocatalytic activity in TC degradation. This platform provides new opportunities for studying natural halloysite nanotubes and for simultaneously detecting and photodegrading other deleterious substances.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.