Abstract

A novel metal enhanced chemiluminescence (MEC) nanosensor was developed for ultrasensitive biosensing and imaging, based on functional DNA dendrimer (FDD), proximity-dependent DNAzyme and silver nanoparticles (AgNPs). The FDD containing two split G-quadruplex structures was prepared through an enzyme-free and step-by-step assembly strategy, and then reacted with AgNPs and hemin molecules to form the FDD/hemin/AgNPs facilely. Such a MEC nanosensor consisted of three modules: FDD (scaffold), the generated G-quadruplex/hemin DNAzyme (signal reporter) and AgNPs (chemiluminescence enhancer). The MEC effect was achieved by controlling the length of DNA sequences between AgNPs on the periphery of FDD and DNAzymes inside it. Such nanosensor exhibited 9-fold amplification and another 6.4-fold metal enhancement in chemiluminescence intensity, which can be easily applied into trace detection of multiple protein markers using a disposable protein immunoarray. The FDD/hemin/AgNPs-based multiplex MEC imaging assay showed wide linear ranges over 5 orders of magnitude and detection limits down to 5× 10−5 ng L−1 and 1.8 × 10−4 U mL−1 for cardiac troponin T and carcinoma antigen 125, demonstrating a promising potential in application to protein analysis and clinical diagnosis. Moreover, the MEC nanosensor can be effectively delivered into cells with excellent biocompatibility and outstanding stability, offering a new tool for detection of intracellular targets and suggesting wide applications in bioassay.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call