Abstract
AbstractIn this work experiments on metal dusting of binary iron aluminium alloys with 15, 26 and 40 at.% Al were performed in strongly carburising CO‐H2‐H2O gas mixtures at 600 °C. The mass gain kinetics was measured using thermogravimetric analysis (TGA). The carburised samples were characterised by means of light optical microscopy (LOM), scanning electron microscopy (SEM), X‐ray diffraction (XRD) and X‐ray photoelectron spectroscopy (XPS). It was found that the mass gain kinetics depends on the CO content of the gas mixtures and on the Al content of the alloys. With decreasing carbon activity the carburisation reaction kinetics decreases and the onset of metal dusting is retarded for increasing time periods. With increasing Al content of the alloys the carburisation reaction is slower and metal dusting sets on at later times. The samples were not pre‐treated for the formation of a protective oxide scale. By X‐ray Photoelectron Spectroscopy (XPS) analyses of the carburised iron aluminium samples it was found that the formation of Al2O3 layers has taken place in the CO‐H2‐H2O gas atmospheres. Needle‐ or plate‐like κ‐phase (Fe3AlCx) precipitates close to the surface of the carburised Fe‐15Al sample were detected by means of XRD and LOM. The coke on top of the carburised samples mainly consists of filamentous carbon with metal particles at their tips.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.