Abstract

Reducing gases rich in carbon-bearing species such as CO can be supersaturated with respect to graphite at intermediate temperatures of about 400–700°C. Engineering alloys such as low-alloy and stainless steels, and heat-resisting iron-, nickel-, and cobalt-base alloys catalyze gas processes that release the carbon. An understanding of how the resulting carbon deposition can destroy alloys at a catastrophically rapid rate has been the objective of a great deal of research. The current review of recent work on metal dusting covers the mass transfer—principally carbon diffusion—and graphite nucleation processes involved. A clear distinction emerges between ferritic alloys, which form cementite and precipitate graphite within that carbide, and austenitics that nucleate graphite directly within the metal. The latter process is facilitated by the strong orientation relationship between the graphite and face-centered cubic (fcc) lattices. Strategies for the control of dusting are briefly outlined.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.