Abstract

Efficient hydrogen isotope separation is crucial for applications in energy production and advanced scientific research, but separation of these poses significant challenges. In this study, we developed amorphous microporous carbon (AMC) derived from a zeolite template and explored hydrogen isotope separation using quantum sieving. Thermal desorption spectroscopy (TDS) technique was used to evaluate the selectivity of hydrogen (H2) and deuterium (D2) isotope separation. The doping of metal ions, such as Ca2⁺, Mg2⁺, Ni2⁺, and Cu2⁺, in the porous carbon modulates the physicochemical properties of the pores. The metal-doped carbon samples demonstrated D2vs H2 selectivity (SD2/H2) of over 10, compared to the pristine carbon's SD2/H2 of less than 8. Density functional theory (DFT) calculation infers that pore modulation through metal doping enhanced the binding affinity of materials towards D2 resulting in increased separation selectivity compared to pristine carbon samples. This approach not only boosts separation efficiency but also provides a scalable and cost-effective solution for industrial applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.