Abstract

We present a deep-subwavelength-size metal slot-waveguide structure which can efficiently propagate surface plasmon polaritons (SPPs) at 1.55 mum within a high-index material. Through a systematic design analysis, we investigate the intrinsic tradeoffs and suggest solutions to substantially increase the propagation length of SPPs combining high-index dielectrics and metal structures. By studying several metal/dielectric geometries, we have found that the slot-waveguide size can be significantly decreased by the use of high-index materials without compromising the overall propagation losses. Our analysis also indicates that the device size-scaling is ultimately limited by a cutoff thickness for the metal film in which the slot is defined. For film thicknesses below cutoff, radiation modes exist which leak out of the guiding region. For certain operating frequencies, the radiant energy leaks out into both free space modes as well as surface plasmons guided along the top/bottom metal surfaces of the device. We have shown that, by using a silicon filling, the cutoff thickness of a 100-nm-wide slot waveguide can be as small as 90 nm, compared with 750 nm for the unfilled reference structures. In addition, we have demonstrated that by the use of SiO <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sub> gap regions surrounding the Si dielectric core in a 200times400-nm silver slot region (partially filled metal slot), we can considerably reduce the overall propagation losses to less than 0.14 dB/mum, corresponding to a propagation length of approximately 50 mum

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.