Abstract

Active beam-steering devices near the optical frequencies have long been sought after due to their applications in communication, defense, and display technologies; however, the challenge lies in achieving actively tunable structures near these frequencies. An array of metal-dielectric-metal plasmonic resonators is demonstrated as a dynamic beam-steering device to operate at midinfrared wavelengths. We numerically demonstrate continuous-angle beam steering of 8.75° by making use of tunable properties of silicon as the active dielectric. The proposed device achieves a refractive index insensitive divergence angle and it operates in a 650 nm wide spectral window around 10 μm wavelength. The results of this Letter pave the way to exploiting active beam steering in various applications at midinfrared wavelengths.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call