Abstract

Stretchable conductors and sensors have attracted great attention for use in electronic skin and healthcare monitoring. Despite the development of many stretchable conductors, there are still very few studies that utilize the conventional methods making electrodes and circuits used in current industry. A method is proposed to fabricate a stretchable electrode pattern and a stretchable tactile sensor by simply depositing linear metal lines through a mask on a stretchable substrate. A method is developed of a self-generating microfibril network on the surface of stretchable block copolymer substrates. The formation mechanism of the microfibril network is studied with finite element method simulations. Metals (Au and Ag nanowires) are deposited directly on the substrate through a patterned mask. This study shows that strain-insensitive circuit and strain-sensitive sensor can be fabricated in a controlled way by adjusting the thickness of the deposited metal, which makes it easy to fabricate a tactile sensor by metal deposition. Also, by using the characteristic that the sensor has different sensitivity depending on the line pattern width, a novel sensor structure simultaneously providing analog-type position information and pressure value is proposed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.