Abstract

Short, alpha-helical coiled coils provide a simple, modular method to direct the assembly of proteins into higher order structures. We previously demonstrated that by genetically fusing de novo-designed coiled coils of the appropriate oligomerization state to a natural trimeric protein, we could direct the assembly of this protein into various geometrical cages. Here, we have extended this approach by appending a coiled coil designed to trimerize in response to binding divalent transition metal ions and thereby achieve metal ion-dependent assembly of a tetrahedral protein cage. Ni2+ , Co2+ , Cu2+ , and Zn2+ ions were evaluated, with Ni2+ proving the most effective at mediating protein assembly. Characterization of the assembled protein indicated that the metal ion-protein complex formed discrete globular structures of the diameter expected for a complex containing 12 copies of the protein monomer. Protein assembly could be reversed by removing metal ions with ethylenediaminetetraacetic acid or under mildly acidic conditions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call