Abstract

A visualization method for monitoring minor metal crack propagation is presented in this paper. Through CdS@ZnS core-shell quantum dots (QDs) enhanced emission of photoluminescence (PL), this crack detection method provides a visualization signal in real time and through a noncontact fashion. The crack of the CdS@ZnS core-shell QDs-epoxy resin kept a synchronous propagation with the metal crack. Detection of the tip growth in the film layers demonstrated that the actual crack propagation on the metal surface could be deduced from the tips in the film layers. The fluorescence peak tended to increase along the crack from the initial opening to the tip. Crack width as small as 10μm can be detected with a precision of 0.1μm and the minimum crack tip width of the QDs-epoxy resin was measured as 0.72μm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.