Abstract

1H NMR data applied to the paramagnetic cobalt(II) derivative of azurin from Pseudomonas aeruginosa have made it possible to show that the metal ion is bound to the protein in the unfolded state. The relaxation data as well as the low magnetic anisotropy of the metal ion indicate that the cobalt ion is tetrahedral in the unfolded form. The cobalt ligands have been identified as the residues Gly45, His46, Cys112 and His117. Met121 is not coordinated in the unfolded state. In this state, the metal ion is not constrained to adopt a bipyramidal geometry, as imposed by the protein when it is folded. This is clear confirmation of the rack-induced bonding mechanism previously proposed for the metal ion in azurin.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call