Abstract

Covalent adaptable networks (CANs) can replace classical thermosets, as their unique dynamic covalent bonds enable recyclable crosslinked polymers. Their creep susceptibility, however, hampers their application. Herein, an efficient strategy to enhance creep resistance of CANs via metal coordination to dynamic covalent imines is demonstrated. Crucially, the coordination bonds not only form additional crosslinks, but also affect the imine exchange. This dual effect results in enhanced glass transition temperature (Tg ), elasticmodulus (G') and creep resistance. The robustness of metal coordination is demonstrated by varying metal ion, counter anion, and coordinating imine ligand. All variations in metal or anion significantly enhance the material properties. The Tg and G' of the CANs are correlated to the coordination bond strength, offering a tunable handle by which choice of metal can steer material properties. Additionally, large differences in Tg and G' are observed for materials with different anions, which are mostly linked to the anion size. This serves as a reminder that for coordination chemistry in the bulk, not only the metal ion is to be considered, but also the accompanying anion. Finally, the reinforcing effect of metal coordination is proved insensitive to the metal-ligand ratio, emphasizing the robustness of the applied method.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call