Abstract

There is a recent surge in activity to develop high power electric (or hybrid electric) aircraft. Part of this development effort is the creation of lightweight and small volume high-performance motors and airborne power transmission cables. As part of the power transmission of a distributed propulsion aircraft will be T-terminals to extract power to individual motors from a “main” power cable. In this research, a standard pressed plate high purity Cu T-terminal, with cylindrical high-temperature superconducting cables (main cable current of 20 kA, branch cable current of 2.5 kA), were investigated using Multiphysics simulations. Then, a more geometrically optimized high purity Al-Cu composite T-terminal was simulated under similar conditions. Discussed are the influence of T-junction geometry, operating temperature (30 to 50 K), contact resistance, and magnetoresistance on joule losses of terminals with different masses. It is shown the Al-Cu terminal can greatly reduce joule losses/mass of the T-terminal while also having an intrinsic clamping force from thermal expansion of the Al shell of the composite structure.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call