Abstract

Simple and novel nuclease models have been synthesized. These involve metal-binding ligand 1,4,7,10-tetraazlcyclododecane (cyclen) tethered to an acridine ring (a DNA-binding group) by amide linkers of various lengths. Binding of these probes to DNA was studied by monitoring changes in their UV–visible spectra affected by the presence of DNA. Titration of these compounds with increasing amounts of pBR322 DNA caused hypochromic effects and shifted the acridine absorption at 360 nm to a longer wavelength. Under biologically relevant conditions (37 °C and pH 7.4), specific transition metal complexes of these compounds are found to be highly effective catalysts toward the hydrolysis of plasmid DNA. This is demonstrated by their ability to convert the super-coiled DNA (form I) to open-circular DNA (form II). Structure-activity correlation studies show that hydrolytic activity depends on both the structure of ligand (L 1 > L 2 > L 3) and the nature of metal ion cofactor (Co 3+ > Zn 2+ > Cr 2+ > Ni 2+ > Cu 2+ > Fe 3+).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.