Abstract

Several metal complexes with a boron dipyrromethene (BODIPY)-functionalized N-heterocyclic carbene (NHC) ligand 4 were synthesized. The fluorescence in [(4)(SIMes)RuCl2(ind)] complex is quenched (Φ = 0.003), it is weak in [(4)PdI2(Clpy)] (Φ = 0.033), and strong in [(4)AuI] (Φ = 0.70). The BODIPY-tagged complexes can experience pronounced changes in the brightness of the fluorophore upon ligand-exchange and ligand-dissociation reactions. Complexes [(4)MX(1,5-cyclooctadiene)] (M = Rh, Ir; X = Cl, I; Φ = 0.008-0.016) are converted into strongly fluorescent complexes [(4)MX(CO)2] (Φ = 0.53-0.70) upon reaction with carbon monoxide. The unquenching of the Rh and Ir complexes appears to be a consequence of the decreased electron density at Rh or Ir in the carbonyl complexes. In contrast, the substitution of an iodo ligand in [(4)AuI] by an electron-rich thiolate decreases the brightness of the BODIPY fluorophore, rendering the BODIPY as a highly sensitive probe for changes in the coordination sphere of the transition metal.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.