Abstract

Copper(II), ruthenium(III) and zinc(II) complexes of 2-methylimidazole (2-MeImzlH) encapsulated in the supercages of zeolite-Y have been synthesized and characterized by various physicochemical measurements. The catalytic potential of these complexes were tested for the oxidation of phenol and benzyl alcohol using 30 % H2O2 as an oxidant. Various parameters, such as concentration of oxidant and catalyst, reaction time, temperature of the reaction, volume of solvent and type of solvents have been optimized to obtain the maximum transformation of phenol to catechol and hydroquinone. The catalytic activity of zeolite encapsulated complexes followed the order: [Cu(2-MeImzlH)]-Y (72.5 %) > [Ru(2-MeImzlH)]-Y (57.8 %) > [Zn(2-MeImzlH)]-Y (43.2 %) after 5 h of reaction time. Oxidation of benzyl alcohol catalyzed by these encapsulated complexes gave only benzaldehyde as the product. The zeolite-encapsulated complexes could be easily separated after the reaction and reused. The neat complexes gave low conversions as compared to the encapsulated catalysts and decomposed. The catalytic activity of zeolite encapsulated complexes was found to be better than their respective non-encapsulated complexes and metal exchanged zeolites.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call