Abstract

Activating the cGAS-STING pathway of circulating tumor cell clusters (CTC clusters) represents a promising strategy to mitigate metastases. To fully exploit the potential of cholesterol-regulating agents in activating CTCs’ STING levels, we developed a nanoparticle (NP) composed of metal complex lipid (MCL). This design includes MCL-miriplatin to increase NP stiffness and loads lomitapide (lomi) modulating cholesterol levels, resulting in the creation of PLTs@Pt-lipid@lomi NPs. MCL-miriplatin not only enhances lomi’s eliciting efficacy on STING pathway but also increases NPs’ stiffness, thus a vital factor affecting the penetration into CTC clusters to further boost lomi’s ability. Demonstrated by cy5 tracking experiments, PLTs@Pt-lipid@lomi NPs quickly attach to cancer cell via platelet membrane anchorage, penetrate deep into the spheres, and reach the subcellular endoplasmic reticulum where lomi regulates cholesterol. Additionally, these NPs have been shown to track CTCs in the bloodstream, a capability not demonstrated by the free drug. PLTs@Pt-lipid@lomi NPs more efficiently activate the STING pathway and reduce CTC stemness compared to free lomi. Ultimately, PLTs@Pt-lipid@lomi NPs reduce metastasis in a post-surgery animal model. While cholesterol-regulating agents are limited in efficacy when being repositioned as immunomodulatory agents, this MCL-composing NP strategy demonstrates the potential to effectively deliver these agents to target CTC clusters.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.