Abstract

Chronic myeloid leukemia (CML) is a hematologic disorder characterized by the constitutive expression of BCR-ABL tyrosine kinase. Although successful implementation of tyrosine kinase inhibitors for the treatment of CML remain a traditional choice for molecularly targeted therapy, some patients present primary or secondary resistance to such therapy. Therefore, alternative therapeutic strategies are required to treat resistant CML cells. Accordingly, new anti-proliferative and/or pro-apoptotic compounds would be needed for clinical treatment. In the present investigation, we demonstrate that TPEN (e.g. 3μM), a lipid-soluble metal chelator, induces apoptosis in K562 cells via a molecular cascade involving H2O2≫JNK, NF-κB>c-JUN, P73>PUMA, BAX>loss of ΔΨm>CASPASE-3>nuclei/DNA fragmentation. Fragmentation of the nuclei and DNA are indicative of cell death by apoptosis. Remarkably, the antioxidant N-acetyl-cysteine, and inhibitors of the transcription factors CASPASE 3 and (JNK) kinase, decreased oxidative stress (OS) and cell death in these cells. This is evidenced by fluorescence microscopy, flow cytometry and immunocytochemistry for OS markers (e.g. generation of H2O2 and DJ 1 oxidation) and nuclear expression of apoptotic markers (e.g. activated caspase 3 and JNK kinase). In addition, TPEN causes no detectable damage in human peripheral blood lymphocyte cells (hPBLCs). We conclude that TPEN selectively induces apoptosis in K562 cells via an OS-mechanism. Our findings may provide insight into more effective CML anticancer therapies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.