Abstract
In the present work, a new metal-chelating platform was designed by using IDA as a chelating agent and Cu(II) as an affinity component for amyloglucosidase adsorption. Poly(AAm-GMA) cryogels were used as structural elements, while GMA monomer served reactive epoxy groups for IDA immobilization. Synthesized cryogels were characterized by FTIR, SEM and EDX studies. Pore diameter of the whole polymeric structure was 3–10 \(\upmu \hbox {m}\). Effects of medium pH, temperature, ionic strength along with amyloglucosidase concentration were also investigated for more effective amyloglucosidase adsorption and maximum adsorbed amount of amyloglucosidase was \(2.93\,\hbox {mg }\hbox {g}^{-1}\) cryogel by the optimum conditions. Reusability profile of the poly(AAm-GMA)-IDA-\(\hbox {Cu}^{2+}\) cryogels was also studied and it was found that the synthesized cryogels could be used repeatedly for many times without any significant decrease on their adsorption capacity. Also continuous hydrolysis of starch by using immobilized form of amyloglucosidase in a column system was studied.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.