Abstract

Sodium sulfur batteries require efficient sulfur hosts that can capture soluble polysulfides and enable fast reduction kinetics. Herein, we design hollow, polar and catalytic bipyramid prisms of cobalt sulfide as efficient sulfur host for sodium sulfur batteries. Cobalt sulfide has interwoven surfaces with wide internal spaces that can accommodate sodium polysulfides and withstand volumetric expansion. Furthermore, results from in/ex-situ characterization techniques and density functional theory calculations support the significance of the polar and catalytic properties of cobalt sulfide as hosts for soluble sodium polysulfides that reduce the shuttle effect and display excellent electrochemical performance. The polar catalytic bipyramid prisms sulfur@cobalt sulfide composite exhibits a high capacity of 755 mAh g−1 in the second discharge and 675 mAh g−1 after 800 charge/discharge cycles, with an ultralow capacity decay rate of 0.0126 % at a high current density of 0.5 C. Additionally, at a high mass loading of 9.1 mg cm−2, sulfur@cobalt sulfide shows high capacity of 545 mAh g−1 at a current density of 0.5 C. This study demonstrates a hollow, polar, and catalytic sulfur host with a unique structure that can capture sodium polysulfides and speed up the reduction reaction of long chain sodium polysulfides to solid small chain polysulfides, which results in excellent electrochemical performance for sodium-sulfur batteries.

Highlights

  • Sodium sulfur batteries require efficient sulfur hosts that can capture soluble polysulfides and enable fast reduction kinetics

  • The charge/discharge mechanisms of S@BPCO was converted into CoS2/C (BPCS) for reversible battery reactions have been studied using in situ Raman spectroscopy, in situ X-ray diffraction (XRD), ex situ transmission electron microscopy (TEM), ex situ Xray photoelectron spectroscopy (XPS), and density functional theory (DFT) calculations

  • The X-ray diffraction (XRD) pattern confirmed the formation of C10H16Co3O11 and was attributed to the standard PDF of JCPDS#22-0582, as shown in Supplementary Fig. 1

Read more

Summary

Introduction

Sodium sulfur batteries require efficient sulfur hosts that can capture soluble polysulfides and enable fast reduction kinetics. This study demonstrates a hollow, polar, and catalytic sulfur host with a unique structure that can capture sodium polysulfides and speed up the reduction reaction of long chain sodium polysulfides to solid small chain polysulfides, which results in excellent electrochemical performance for sodium-sulfur batteries. S@BPCS is an efficient host for solid-phase S and NaPSs, because every bipyramid prism structure has a wide hollow cavity for sulfur loading and for the entrapment of NaPSs. When used as a cathode in Na–S batteries, S@BPCS exhibits good electrochemical performance with stable cycling and rate capability that suggests maximum utilization of S, strong binding of NaPSs, is catalytically active for converting long-chain polysulfides into small chain polysulfides, and it delivers good electrical conductivity. The charge/discharge mechanisms of S@BPCS for reversible battery reactions have been studied using in situ Raman spectroscopy, in situ XRD, ex situ TEM, ex situ Xray photoelectron spectroscopy (XPS), and density functional theory (DFT) calculations

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.