Abstract

In this work, we achieved switching degradation of vinyl polymers made of a carbon-carbon bonded backbone. Crucial in this strategy was a small feed of methyl α-chloroacrylate (MCA) as the comonomer in radical polymerization of methyl methacrylate (MMA) so that the carbon-halogen bonds were introduced as the triggers for degradation. The "in-chain" trigger was activated by a one-electron redox metal catalyst as the chemical stimulus to generate the carbon-centered radical species, and subsequently, the neighboring carbon-carbon bond was cleaved via an electron transfer of the radical species giving the terminal olefin. Particularly, an iron complex (FeCl2) in conjunction with tributylamine (n-Bu3N) was effective as the chemical stimulus to allow the switching degradation, where the molecular weight was gradually decreased over time. The switching feature was confirmed by some control experiments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.