Abstract

Modulated optical nanoprobes (MOONs) are microscopic (spherical and aspherical) fluorescent particles designed to emit varying intensities of light in a manner that depends on particle orientation. MOONs can be prepared over a broad size range, allowing them to be tailored to applications including intracellular sensors, using submicrometer MOONs, and immunoassays, using 1−10 μm MOONs. When particle orientation is controlled remotely, using magnetic fields (MagMOONs), it allows modulation of fluorescence intensity in a selected temporal pattern. In the absence of external fields, or material that responds to external fields, the particles tumble erratically due to Brownian thermal forces (Brownian MOONs). These erratic changes in orientation cause the MOONs to blink. The temporal pattern of blinking reveals information about the local rheological environment and any forces and torques acting on the MOONs, including biomechanical forces as observed in macrophages. The rotational diffusion rate of Brownian MOONs is inversely proportional to the particle volume and hydrodynamic shape factor, for constant temperature and viscosity. Changes in the particle volume and shape due to binding, deformation, or aggregation can be studied using the temporal time pattern from the probes. The small size and the large number of MOONs that can be viewed simultaneously provide local measurements of physical properties, in both homogeneous and inhomogeneous media, as well as global statistical ensemble properties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.