Abstract

This paper presents metal speciation calculations that are based on mathematical modelling of chemical reactions in natural waters. Metal concentrations (Hg, Cd, Pb, Ni, Cu, Al, Sr) were determined, and their speciation in water were calculated for 22 water areas in the Kola region. Meanwhile, the accumulation of metals in fish organs and tissues was studied (e.g. whitefish). The biogeochemical activity of metals determines the proportions of labile and non-labile speciation in water. In the distribution zones of non-ferrous industry effluents, metal aqua-ions prevail; during the distribution, the proportions change in accordance with the metal activity. The bioavailability of metal speciation is estimated depending on aqueous geochemical conditions and, accordingly, the speciation of metals (in situ), based on the original studies of the lakes of the Kola region in northern Russia. The connection among the metal contents in fish and water has been identified using multidimensional scaling and redundancy analysis techniques. Using the example of natural conditions in northern low-salinity freshwaters, it is demonstrated that labile Cd, Pb, Ni, Cu, Al, and Sr are the species most bioavailable and able to penetrate fish; meanwhile, the organic complexes of Hg, Pb, and Al have a greater affinity to accumulation in the gills. This study demonstrates the need to correct the approved water quality standards in Russia, taking into account the high bioavailability of metals in northern low-salinity waters.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call