Abstract

A cutinase from Saccharomonospora viridis AHK190, Cut190, can hydrolyze polyethylene terephthalate and has a unique feature that the activity and stability are regulated by Ca2+ binding. Our recent structural and functional analyses showed three Ca2+ binding sites and their respective roles. Here, we analysed the binding thermodynamics of Mn2+, Zn2+ and Mg2+ to Cut190 and their effects on the catalytic activity and thermal stability. The binding affinities of Mn2+ and Zn2+ were higher than that of Mg2+ and are all entropy driven with a binding stoichiometry of three, one and one for Zn2+, Mn2+ and Mg2+, respectively. The catalytic activity was measured in the presence of the respective metals, where the activity of 0.25 mM Mn2+ was comparable to that of 2.5 mM Ca2+. Our 3D Reference Interaction Site Model calculations suggested that all the ions exhibited a high occupancy rate for Site 2. Thus, Mn2+ and Mg2+ would most likely bind to Site 2 (contributes to stability) with high affinity, while to Sites 1 and 3 (contributes to activity) with low affinity. We elucidate the metal-dependent structural and functional properties of Cut190 and show the subtle balance on structure stability and flexibility is controlled by specific metal ions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.