Abstract

The number of metal ions required for phosphoryl transfer in restriction endonucleases is still an unresolved question in molecular biology. The two Ca(2+) and Mn(2+) ions observed in the pre- and post-reactive complexes of BamHI conform to the classical two-metal ion choreography. We probed the Mg(2+) cofactor positions at the active site of BamHI by molecular dynamics simulations with one and two metal ions present and identified several catalytically relevant sites. These can mark the pathway of a single ion during catalysis, suggesting its critical role, while a regulatory function is proposed for a possible second ion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call